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10  Abstract

11 Wildfire smoke often aggravates the ozone (O3) pollution and negatively affect crop yields. To date,
12 the global impact of fire-sourced O3 exposure on crop yields still remained unknown. To address
13 this issue, a multi-stage model was developed to quantify the global wildfire-induced ambient O3
14 concentrations in the future scenarios. The results suggested that the relationship between observed
15 K* level and simulated fire-sourced maximum daily MDA 8-hour average (MDAS8) O3
16  concentration reached 0.67, indicating the robustness of fire-sourced Os estimate. In both of
17  historical and future scenarios, Sub-Sahara Africa (SS: 14.9 + 8.4 (historical) and 18.3 £9.6 (mean
18  of the future scenarios) pg/m®) and South America (SA: 4.0 £2.5 and 4.7 £3.2 pg/m®) showed the
19  highest fire-sourced MDA8 O3 concentrations among all of the regions. However, the crop
20  production losses (CPL) caused by Oz exposure reached the highest values in China due to very
21 high total crop yields and relatively high wildfire-induced MDAS8 O3 levels. Moreover, CPL in
22 China was sensitive to emission scenario, indicating the effective emission control could largely
23 decrease fire-sourced O3 damage to crop. In contrast, both of SS and SA even showed the higher
24 CPL in low-carbon scenario (SSP1-2.6), suggesting more stringent control measures are required to
25 offset the wildfire contribution. Our findings call for attention on the threat to future global food
26 security from the absence of pollution mitigation and the persistence of global warming.

27  Keywords: MDAS Og, wildfire, crop yield, Sub-Sahara Africa, China

28 1. Introduction

29 Along with the warming climate, large-scale wildfire events have experienced dramatic

1



https://doi.org/10.5194/egusphere-2025-847
Preprint. Discussion started: 12 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

30 increases in frequency and intensity in the past decades, and the wildfire seasons have been
31 significantly prolonged in many regions such as the western part of the United States and Australia
32 (Jonesetal. 2022, Richardson et al. 2022, Wang et al. 2022). Wildfire often released a large number
33 of gaseous precursors such as carbon monoxide (CO), nitrogen dioxides (NOx), and volatile organic
34 compounds (VOC) (Anderson et al. 2024, Xu et al. 2022), which could significantly enhance the
35  ozone (03) levels through photochemical reactions (Jaffe et al. 2013). Recent studies have revealed
36  that wildfire contributed to 3.6% of ambient all-source O3 level globally (Xu et al. 2023). The
37  aggravation of O3 pollution not only poses detrimental effects on human health (Liu et al. 2018),
38  butalso reduced the crop yields because the excessive O3 exposure could affect plant photosynthesis
39  viastomatal uptake (Karmakar et al. 2022, Zhao et al. 2020). Thus, quantifying the negative impacts
40  of fire-sourced O3 pollution on crop yields was beneficial to propose optimal strategy to ensure
41  agricultural production.

42 Notably, warming climate in the future not only would increase wildfire burned areas, but also
43  intensified the severity of fire weather (Richardson et al. 2022, Wasserman and Mueller 2023).
44 Moreover, wildfire and heatwave have generated the positive feedback and the mechanism would
45  be further enhanced in the future (Senande-Rivera et al. 2022, Zhao et al. 2024). Meanwhile, the
46  ambient O3 concentration was very sensitive to air temperature, and the continuous increase of air
47  temperature inevitably aggravate wildfire-related O3 pollution in the future (Bloomer et al. 2009, Li
48  etal. 2024a, Selin et al. 2009). Therefore, it is necessary to analyze the spatiotemporal characteristics
49  of global wildfire-induced O3 concentrations especially in the future scenarios, which was favorable
50  toaccurately identify the hotspots for wildfire-induced O pollution and to propose effective control
51  measures targeting different future scenarios.

52 A growing body of studies have focused on the wildfire contribution to O3 pollution. Lee et al.
53  (2024) employed the generalized additive model (GAM) to predict the wildfire-related O3
54 concentration in the United States and found wildfire increased average 8 ppb maximum MDA8our
55  (MDAS) O; concentration across the entire country (Lee and Jaffe 2024). Besides, Xu et al. (2023)
56  have quantified that the wildfire led to average 3.2 pg/m? increase of O3 concentration globally.
57  Unfortunately, most of the current studies assessed the contribution of historical wildfire to ambient

58  O; level, while only two studies explored the wildfire contribution to O3 pollution in the future
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59  scenarios (Yang et al. 2022, Yue et al. 2015). Both of these studies only focused on wildfire in North
60  America, whereas the future wildfire contribution to O3 pollution in other regions are still unknown.
61  Moreover, their negative impacts on crop yields are also not clear. In fact, the global wheat yield
62  losses reached 0.95% (around 20 t/km?) per ppb Os increase (Guarin et al. 2019). Although the
63  current contribution ratio of wildfire to all-source O3 level is not high, the higher wildfire risk and
64  total crop yields in the future scenarios highlights the seriousness of crop yield losses.

65 Here, our study developed an ensemble machine-learning model to predict fire-sourced MDA
66 O3 levels under four future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Then, the
67  spatiotemporal variations of these concentrations and the key drivers behind them were further
68  revealed. Finally, a crop yield loss assessment framework was applied to quantify the negative
69  impacts (crop yield losses) of wildfire-induced O3 exposure on global crop yield. The hotspots of
70  crop yield losses in different scenarios should be determined and the appropriate control measures
71 should be proposed to reduce the economic losses.

72 2. Materials and methods

73 2.1 Data preparation

74 Most ground-level MDAS O3 observations focused on East Asia, India, Western Europe, and
75  the contiguous United States. Daily MDAS8 O; data during 2015-2019 over China were collected
76  from the Ministry of Ecology and Environment of China. The observation network comprises of
77 2,000 monitoring sites distributed across various land-use types (Figure S1). Quality assurance for
78  the ground-level observations in China was performed based on the HJ 630-2011 specifications.
79  The dataset of daily MDAS8 O3 concentrations from 2015 to 2019 in India were collected from the

80 Central Pollution Control Board (CPCB) online database (https:/app.cpcbecr.com/cer/#/caagm-

81 dashboard-all/caagm-landing). The detailed data quality assurance/control has been introduced by

82  Gurjar et al. (2016). Ground-level observation dataset for member countries of the European
83  Economic Area were collected from the European Environment Agency. The data quality control of
84  European Environment Agency was explained by Keller et al. (2021). The dataset of daily MDA
85 Oz levels in more than 200 monitoring sites across the United States were downloaded from the
86  website of https://www.epa.gov/ (Figure S1). The quality control of these observations in EPA was

87  carefully introduced by (Lamsal et al. 2015). Observation data in other countries and territories were
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88  downloaded from the website of OpenAQ (https://openaq.org/). After the data cleaning and quality
89 control, more than 300,000 daily MDAS8 O3 measurements in 3015 sites were collected to simulate
90 the global O3 concentrations. For Os, 1 part per billion (ppb) was approximated as 1.96 pg/m? based
91  on the standard air pressure and temperature (25.5°C and 101.325 kPa). The Unite of O3 was
92  changed into pg/m’ unified.
93 GEOS-Chem (v13.4.0) model was utilized to estimate atmospheric MDA O3 concentrations
94 during Jan. 1-Dec. 31 during 2015-2019, 2045-2049, and 2095-2099 periods. In our study, the years
95  0of2015-2019 was regarded as the historical period, whereas the years of 2045-2049 and 2095-2099
96  were regarded as the future period. This model comprises of a complex chemistry mechanism of
97  tropospheric NOx-VOC-Os-aerosol (Geddes et al. 2015, Zhao et al. 2017). This model for O3
98  estimates during historical period and future scenario were driven by MERRA2 and
99  GCAP2_CMIP6 reanalysis meteorological factors, respectively (Bali et al. 2021, Zhang 2016). The
100  future scenario includes SSP1-2.6 (low-carbon emission scenario), SSP2-4.5 (middle-carbon
101  emission scenario), SSP3-7.0 (traditional energy scenario), and SS5-8.5 (high energy consumption
102  scenario). A global simulation was performed at a spatial resolution of 2 x 2.5° resolution (Bindle
103 etal. 2021, Wainwright et al. 2012). The historical anthropogenic emission inventory during 2015-
104 2019 was downloaded from Community Emissions Data System (CEDS) (Hoesly et al. 2018). The
105  anthropogenic and wildfire emissions during 2045-2049 and 2095-2099 were collected from the

106 website of https://esgf-node.lInl.gov/search/input4mips/. Wildfire emission during 2015-2019 was

107 obtained from GFED(Chen et al. 2023, Pan et al. 2020, Peiro et al. 2022, van Wees et al. 2022).
108  Some other natural emission such as the lightning NOx emission was collected from

109  http://geoschemdata.wustl.edu/ExtData/HEMCO/OFFLINE LIGHTNING/v2020-03/MERRA2/

110  (Lietal. 2022, Nault et al. 2017, Verma et al. 2021). Meteorological factors including 2 m dewpoint
111  temperature (D2m), surface pressure (Sp), 2 m temperature (T2m), and total precipitation (Tp), 10
112 m wind component (U10 and V10) during 2015-2019 were collected from the fifth-generation
113 European Centre for Medium-Range Weather Forecasts Reanalysis (ERA-5). All of these
114  meteorological data showed the same spatial resolution of 0.25°x0.25°. For the estimates in the
115 future scenarios, the CMIP6 dataset in four scenarios (e.g., SSP1-2.6, SSP2-4.5, SSP3-7.0, and

116 SSP5-8.5) were also applied to predict MDAS8 O; concentrations during 2015-2019, 2045-2049, and
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117 2095-2099. The dataset includes simulated O3 concentrations, 2-m air temperatures, wind speed at
118 850 and 500 hPa, total cloud cover, precipitation, relative humidity, and short-wave radiation. The
119  modelled meteorological parameters and chemical compositions derived from multiple earth system
120  models were integrated into the machine-learning model. The detailed models are introduced in our
121 previous studies(Li et al. 2024b). The elevation was collected from ETOPO at a spatial resolution
122 of 1’. Additionally, the land use type data were downloaded from the reference of Liu et al. (2020).
123 2.2 Model development

124 A multi-stage model was developed to estimate the global fire-sourced MDAS8 O3
125  concentrations (Figure S1). In the first stage, the ground-level MDAS8 O3 levels, meteorological
126 factors, land use types, and simulated O3 levels derived from GEOS-Chem model were integrated
127  into XGBoost model to simulate the full-coverage MDAS O3 levels during 2015-2019. In the second
128  stage, the simulated O3 concentrations and meteorological parameters in four scenarios (SSP1-2.6,
129  SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2015-2019, 2045-2049, and 2095-2099 were collected
130  from CMIP6 dataset including 16 earth system models. Then, the data in the future scenarios were
131  integrated into the XGBoost model to further calibrate the modeling results based on historical
132 dataset (2015-2019) derived from the first stage model. This stage could obtain the calibrated MDA
133 O3 concentrations in different scenarios during 2015-2019, 2045-2049, and 2095-2099. The detailed
134 equations of XGBoost model are summarized as follows:

A D) A(t-1) A(t-2)

- 1
FO=> 1y )+0,ullyy )f[(Xi)+§a§m)|(yi,y )12 00)1+Q(1,)
135 i=1 1)
136 where FO represents the cost function at the t-th period; O denotes the derivative of the function;

137 aiw means the second derivative of the function; / refers to the differentiable convex loss function

A
138  that reveals the difference of the predicted Os level (Y ) of the i-th instance at the t-th period and the

139  target value (yi); fi(x) is the increment; Q( ft) reflects the regularizer. Maximum tree depth and
140  learning rate are 20 and 0.1, respectively.
141 In the third/final stage, the calibrated MDAS8 O3 concentrations based on previous two-stage

142  models were utilized to correct the bias of GEOS-Chem output. Due to the uncertainty of

143  GFED/anthropogenic emission inventory and chemical mechanism, the simulated MDAS8 O3



https://doi.org/10.5194/egusphere-2025-847
Preprint. Discussion started: 12 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

144 concentration often largely biased from the ground-level observations. Therefore, it is necessary to
145  use the assimilated results to optimize the wildfire-induced concentrations. The detailed equations
146  are summarized as follows:

o

147 3_opt_ fire = O

x (O

3_chem_ fire

/0,

3_cal _total

_chem_total (2)
148  where 03_opt_ﬁre is optimized wildfire-induced MDA8 O3 concentration in the final stage.
149 og_cm_mm is calibrated total MDAS Os concentration. 03_Chem_ﬁre is simulated wildfire-induced

150  MDAS8 Os concentration using GEOS-Chem model. Og_chem_mtm is simulated total MDAS8 O3

151  concentrations using GEOS-Chem model.

152 All of the independent variables obtained from various sources were resampled to 0.25° grids
153  using Kriging interpolation. For the machine-learning model development, it was necessary to
154  eliminate some redundant independent variables and then determine the optimal variable group. The
155  redundant variables were identified based on the fact that the overall predictive accuracy could
156  degrade after the removal of these variables. 10-fold cross-validation method was applied to
157  examine the predictive accuracy of XGBoost model.

158 The modelling accuracy of wildfire emission to MDA8 O3 cannot be evaluated directly,
159  whereas the modelling performance of total MDA8 O3 concentrations could be assessed. Some
160  typical statistical indices (supporting information) were applied to evaluate the modelling accuracy
161  of this model on the basis of the ground-level observations.

162 2.3 The crop yield loss estimate

163 Maize, rice, spring wheat, and winter wheat were major food crops globally, and they were
164  sensitive to Oj stress. A typical AOT40 exposure index was defined to assess the negative impact of
165 O3 exposure on crop yields. The AOT40 index was calculated by summing the hourly mean O;

166  levels above 40 ppb during the 8 h over the crop growing season.
167 AOT,,(ppbh) = > ([CO,] —40) [CO,]=>40 ppb (3)
i-1 i

168  where [COs]; is the hourly O3 (ppb), and n denotes the number of hours over the growing season.
169  To date, some OTC/FACE experiments have been applied to assess the adverse effects of elevated

170  Osconcentrations on maize, rice, spring wheat, and winter wheat. The relationships between AOT40
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171  and the relative yields (RY) for major crops have also been developed in recent years. The detailed
172 equations are shown in Table S1. The relative yield loss (RYL) of crop is defined as

173 RYL=1-RY (4)

174 The estimated yield and economic losses are not only related to the RYL, while also associated

175  with the grain yield in each grid. The detail equations are shown as follows:
176 CPL, =RYL, xCR /(1-RYL) (5

177  where CPL; is the estimated crop production loss and CP; is the actual crop production in each grid
178  during the study period.

179 The data about actual crop production in each grid were collected from The Agricultural Model
180  Intercomparison and Improvement Project (AgMIP). The average value of simulated crop yields
181  based on four models including DSSAT-Pythia, pDSSAT, LPJ-GUESS, and LPJ-ML were applied
182  to estimate the actual crop production in each grid during 2015-2019, 2045-2049, and 2095-2099.
183  We selected the simulate results of these models because they showed the better accuracy.

184 3. Results and discussions

185 3.1 Model evaluation

186 Multi-source information data were integrated into the multi-stage model to predict fire-
187  sourced MDAS O; concentrations globally. At first, the global MDAS Os simulation was evaluated.
188  Asillustrated in Figure S2, the 10-fold cross-validation (CV) results suggested that the R? value for
189  MDAS Os estimate reached 0.72. The root mean square error (RMSE) and mean absolute error
190  (MAE) for MDAS O3 were 18.1 and 13.2 pg/m?, respectively (Figure S2). The CV R? value in our
191  study reached 0.72, which was higher than that estimated by Liu et al. (2020) (0.64), indicating the
192  satisfied predictive accuracy of Os estimates. However, the result was slightly lower than that (R%:
193  0.80 and 0.81) estimated by Xu et al. (2023) and Delang et al. (2021). It was supposed that the
194  training samples in our study was much less than those used by Xu et al. (2023) (2000-2019
195  simulation) and Delang et al. (2021) (1990-2019 simulation). It was well known that the predictive
196  accuracy was strongly dependent on the sample size (Li et al. 2020a, Li et al. 2020b). Overall, the
197  predictive performance of ambient O3 pollution was robust.

198 Although the prediction capability of this model has been well validated, the accuracy for the

199  fire-sourced MDAS O3 estimates could not be directly tested. It is well-known that potassium (K*)

7
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200  is often considered to be a fingerprint of wildfire, and thus we employ the relationship between
201  ground-level K* observations and wildfire-induced MDAS8 O3 concentrations to examine the
202  modelling accuracy. As shown in Figure S2, the correlation (R value) between observed K* levels
203  and fire-sourced MDAS8 O; concentrations reached 0.67 (146 training samples), which was above
204 0.5 (p<0.01). The results have confirmed that the wildfire-induced O3 estimate showed the satisfied
205  predictive performance. Overall, the predictive performance was close to some previous studies
206 (Childs et al. 2022, O’Dell et al. 2019, Xu et al. 2023), and thus we could use the result to further
207  perform the data analysis.

208 3.2 Spatiotemporal trends of fire-sourced O3 concentrations

209 Global variations of fire-sourced MDAS8 O3 concentrations in historical and future scenarios
210  are shown in Figure 1 and 2. From 2015 to 2019, the fire-sourced MDAS Os level was in the order
211  of Sub-Saharan Africa (SS) (14.9 + 8.4 ng/m?) > South Asia (SA) (4.0 + 2.5 pg/m?) > China (1.6 +
212 0.7 pg/m®) > United States (US) (1.3 £ 0.9 pg/m?) > Europe (1.2 + 0.4 pg/m?). In future scenarios,
213 fire-sourced MDAS8 O3 levels display marked spatial variability across different Shared
214 Socioeconomic Pathways (SSPs). MDAS8 O3 showed the higher concentrations in some regions such
215 as SS, SA, and US. Among all of the scenarios, fire-sourced O3 levels displayed the highest
216  concentrations in SS. It was assumed that this region possessed extensive burned area (> 50%) and
217  higher biomass fuel consumption (5,000-10,000 g C m2) compared with other regions (van Wees
218  etal. 2022). Following SS, SA also exhibited the higher wildfire-related MDAS8 O3 concentrations.
219  The elevated concentrations of fire-sourced Oz levels in SA were closely associated with
220  exceptionally high fuel consumption (> 10000 g C m?) (Chen et al. 2023, van Wees et al. 2022)
221  though the burned areas were not very high among all of the regions. In addition, it should be noted
222 that US showed the higher wildfire-induced PMa.s or other aerosol components based on previous
223 studies (Park et al. 2024, Xu et al. 2023). However, it did not show the higher O3 concentrations in
224 nearly all of the scenarios. It was assumed that the MDAS O3 concentration exhibited significant
225  latitudinal distribution (decreasing with the increase of latitude) globally. The lower air temperature
226  restricted the secondary formation of ozone in the countries with the higher latitude. Both of China
227  and Europe showed very low burned areas (< 5%) and fuel consumption (most regions < 1000 g C

228  m?), and thus the fire-sourced MDA8 Os concentrations were relatively lower compared with SS
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229  and SA.

230 Besides, the fire-sourced MDAS O3 levels exhibited significant inter-annual trends and large
231  discrepancy between different scenarios. The global average fire-sourced MDAS O3 concentrations
232 showed overall increase from 2010s (1.3 +0.7 pug/m?) to 2090s (SSP1-2.6, SSP3-7.0, and SSP5-8.5:
233 1.9+£0.9,1.6+0.8, and 1.4 + 0.7 ug/m?) for nearly all of the scenarios. The global average wildfire-
234 related MDAS O3 concentrations (the average of 2040s and 2090s) followed the order of SSP3-7.0
235 (1.6 £ 0.9 pg/m?) > SSP5-8.5 (1.5 £ 0.8 pug/m®) > SSP1-2.6 (1.4 + 0.8 ug/m?). The highest wildfire-
236  related MDAS O3 levels in SSP3-7.0 and SSP5-8.5 scenarios were contributed by the increased fuel
237  consumption and the warmer condition because O3 level was more sensitive to air temperature
238  increase (Wang et al. 2021, Wu et al. 2021).

239 Nevertheless, different regions showed distinct long-term trends. Wildfire-related MDAS O3
240  levels in nearly all of the regions in SSP3-7.0 scenario showed remarkable increases compared with
241  the historical period because the warmer condition facilitated the rapid increase of O3 level (Zhao
242 etal. 2020). For low-carbon scenario (SSP1-2.6), the wildfire-related MDAS O3 concentrations in
243 China, Europe, and US showed the relatively lower O3 levels, whereas SA and SS still increased by
244 40% and 64%, respectively. The results suggested that the low-carbon pathway cannot effectively
245  reduce the wildfire-induced Os pollution in both of SA and SS.

246 3.3 The crop yield losses caused by O3 exposures

247 As shown in Figure 4, the global crop yield losses caused by fire-sourced O3 exposure have
248  been quantified based on the equations 3-5. During historical period, the global fire-sourced O3
249 caused 3.1, 1.7, 24, and 43 t/km? crop losses for maize, rice, spring wheat, and winter wheat,
250  respectively. Compared with the historical period, CPL values in different future scenarios displayed
251 large discrepancy. In SSP1-2.6 scenario, CPL of maize, rice, spring wheat, and winter wheat
252 associated with fire-sourced O3 exposure were 1.1, 0.5, 4.6, and 4.6 t/km?, respectively. However,
253  CPL for maize (2.1 and 2.4 t/km?), rice (1.1 and 1.3 t/km?), spring wheat (557 and 184 t/km?), and
254  winter wheat (258 and 19 t/km?) caused by fire-sourced O3 exposure experienced dramatic increases
255  in SSP3-7.0 and SSP5-8.5 scenarios. There are two reasons accounting for the fact. First of all, the
256  wildfire-related O3 exposures showed marked increase in high-emission scenarios (Yang et al. 2022,

257  Yue et al. 2017). Moreover, the crop yields also displayed substantial increases in both of these
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258  scenarios because rapid increase of fertilizer consumption (Brunelle et al. 2015, Randive et al. 2021).
259 In addition, CPL caused by fire-sourced O3 exposure also suffered significant spatial difference.
260  During the historical period, the total CPL for four major foods caused by fire-sourced O3 exposure
261 in China, Europe, US, SA, and SS were 1451, 65, 61, 56, and 404 t/km?, respectively. In the future
262 scenario (SSP1-2.6, SSP3-7.0, and SSP5-8.5), the total CPL for four major foods caused by fire-
263 sourced O3 exposure in China, Europe, US, SA, and SS were 23 (711 and 339), 14 (684 and 32), 11
264 (19 and 21), 14 (35 and 21), 298 (160 and 745) t/km?, respectively. In both of historical and future
265  scenarios, SS, SA, and China showed the higher CPL compared with other regions. The higher CPL
266  in SS and SA might be attributable to the higher fire-sourced O3 concentrations and crop yields. The
267  higher CPL in China might be associated with exceptionally high crop yields though the wildfire-
268  induced Os level was not very high. For most regions, CPL showed the higher values in high-
269  emission scenarios (SSP3-7.0 and SSP5-8.5). Although SS and SA also showed the higher CPL in
270  high-emission scenarios (SSP5-8.5), the CPL values of SS and SA in SSP1-2.6 scenario were still
271  very high. The results suggested that the low-carbon policy still cannot effectively weaken local
272  agricultural damage of fire-sourced O3 exposure.

273 3.4 Implications and limitations

274 Our study developed a multi-stage machine-learning model based on the multi-source
275  information data to predict the fire-sourced MDAS8 O; concentrations at the global scale. It is the
276  first study to use the ground-level observations as the constraint to improve the O3z estimates in the
277  future scenarios. The results confirmed that the model showed the better predictive accuracy and
278  transferability.

279 Our assessment highlighted the severity and scale of the fire-sourced MDAS O3 level and a
280  notable increasing trend in the future scenarios. Especially in high-emission scenarios (SSP3-7.0
281  and SSP5-8.5), the fire-sourced MDAS8 O3 showed the higher concentrations compared with the
282  low-carbon scenario. Therefore, the global mean temperature increase should be limited to 2.0 °C
283  or 1.5°C above pre-industrial levels. In addition, both of SS and SA showed the highest wildfire-
284  induced MDAS O3 concentration compared with other regions, indicating these hotspots should be
285  determined to propose some control measures. For instance, wildfires could be partially controlled

286  via effective evidence-based fire management and appropriate planning (Gonzalez-Mathiesen and

10
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287  March 2021, Gonzalez-Mathiesen et al. 2021). Some prevention policy should be proposed to
288  reduce agricultural waste incineration and some prescribed fires (Koul et al. 2022, Lange and
289  Gillespie 2023). Some wildlands could be also changed into agricultural or commercial lands to
290  reduce the occurrence frequency of forest wildfire (Mansoor et al. 2022).

291 Besides, the impacts of fire-sourced O3 pollution on crop yields were also quantified. The
292  results confirmed China was faced of serious crop production losses, which was even higher than
293  those in SS and SA because the higher crop production and increasing O3 pollution risk in the future
294 scenarios. Overall, crop yield losses of China showed significantly higher values in high-emission
295  scenario (SSP3-7.0 and SSP5-8.5) compared with low-emission scenario (SSP1-2.6). The results
296  suggested that low-carbon policy not only largely weaken Os pollution derived from anthropogenic
297  emission in China, but also decrease wildfire-induced O3 damages to crop yields effectively. The
298  results also confirm that the carbon neutrality policy implemented in China possess sufficient
299  agricultural benefits. In contrast, crop yield losses of SS and SA in low-carbon scenario still showed
300  very high risks. It requires more stringent control measures to further reduce local anthropogenic
301  emission in order to offset the wildfire-induced O3 contribution.

302 It should be noted that our study is still subject to some limitations. Firstly, the future wildfire
303  emission inventory still shows some uncertainties because the accuracy of land use types and burned
304  areas in the future scenarios cannot be examined directly. Second, the chemical transport model
305  used in our study did not account for plume rise, which could overestimate the contribution of
306  wildfire emissions to O3 pollution. Third, the ground-level observations of ambient O3 are unevenly
307  distributed around the world, which could limit the predictive accuracy of O3 levels especially in
308  some regions (e.g., SS and SA) lack of monitoring sites. In the future, it is highly necessary to add
309  sufficient ground-level O3 observations to further improve the accuracy of O3 estimates. Besides,
310  we only used K* observations to examine the predictive accuracy of fire-sourced O3, while K™ might
311  be affected by soil dust. In the future, we should use levoglucosan coupled with K* to validate the
312  predictive accuracy of fire-sourced O3 because levoglucosan was a stronger fingerprint to reflect the
313 fire emission. Finally, the zero-out method might suffer from some limitations because O3 chemistry
314  is nonlinear. More other methods such as air pollutant tracing method should be applied to quantify

315  the fire-sourced O3 concentrations combined with zero-out method. The combination of multiple
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316  method could increase the robustness of fire-sourced O3 estimates.
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Figure 1 The fire-sourced MDAS8 O3 concentrations (Unit: pg/m?) during 2015-2019 (2010s) at the
global scale (a). The latitudinal variations of fire-sourced MDAS Os levels (Unit: pg/m?) (b). The
spatial distributions of fire-sourced MDA8 Os concentrations (Unit: pg/m?) during 2015-2019
(2010s) (c). US, SA, and SS represent the United States, South America, and Sub-Sahara Africa,
respectively. The difference of fire-sourced MDAS O; concentrations in different regions (d).
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Figure 2 The global variations of fire-sourced MDAS8 O3 levels (Unit: pg/m?) in SSP1-2.6 (a), SSP3-
7.0 (b), and SSP5-8.5 (c) scenarios during 2040s. The spatial distributions of wildfire-related MDAS
O3 concentrations (Unit: pg/m?) in different regions during 2040s (d). US, SA, and SS represent the

United States, South America, and Sub-Sahara Africa, respectively.
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Figure 3 The global variations of fire-sourced Os-related maize yield losses (Unit: t/km?) during
historical (a), SSP1-2.6 (b), SSP3-7.0 (d), and SSP5-8.5 (e) scenarios during 2040s, respectively.
The spatial variations of fire-sourced maize yield losses (Unit: t/km?) in major regions during 2040s.
US, SA, and SS represent the United States, South America, and Sub-Sahara Africa, respectively.
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Figure 4 The spatial variations of fire-sourced Os-related maize (a), rice (b), spring wheat (c), and
winter wheat (d) yield losses (Unit: t/km?) during SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios
during 2040s, respectively. A, B, and C denote SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios,
respectively. (e)-(h) represent fire-sourced Os-related maize (e), rice (), spring wheat (g), and winter
wheat (h) yield losses during SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios during 2090s,

respectively. US, SA, and SS represent the United States, South America, and Sub-Sahara Africa,
respectively.
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