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Abstract 10 

Wildfire smoke often aggravates the ozone (O3) pollution and negatively affect crop yields. To date, 11 

the global impact of fire-sourced O3 exposure on crop yields still remained unknown. To address 12 

this issue, a multi-stage model was developed to quantify the global wildfire-induced ambient O3 13 

concentrations in the future scenarios. The results suggested that the relationship between observed 14 

K⁺ level and simulated fire-sourced maximum daily MDA 8-hour average (MDA8) O3 15 

concentration reached 0.67, indicating the robustness of fire-sourced O3 estimate. In both of 16 

historical and future scenarios, Sub-Sahara Africa (SS: 14.9 ± 8.4 (historical) and 18.3 ± 9.6 (mean 17 

of the future scenarios) μg/m3) and South America (SA: 4.0 ± 2.5 and 4.7 ± 3.2 μg/m3) showed the 18 

highest fire-sourced MDA8 O3 concentrations among all of the regions. However, the crop 19 

production losses (CPL) caused by O3 exposure reached the highest values in China due to very 20 

high total crop yields and relatively high wildfire-induced MDA8 O3 levels. Moreover, CPL in 21 

China was sensitive to emission scenario, indicating the effective emission control could largely 22 

decrease fire-sourced O3 damage to crop. In contrast, both of SS and SA even showed the higher 23 

CPL in low-carbon scenario (SSP1-2.6), suggesting more stringent control measures are required to 24 

offset the wildfire contribution. Our findings call for attention on the threat to future global food 25 

security from the absence of pollution mitigation and the persistence of global warming. 26 

Keywords: MDA8 O3, wildfire, crop yield, Sub-Sahara Africa, China 27 

1. Introduction 28 

Along with the warming climate, large-scale wildfire events have experienced dramatic 29 
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increases in frequency and intensity in the past decades, and the wildfire seasons have been 30 

significantly prolonged in many regions such as the western part of the United States and Australia 31 

(Jones et al. 2022, Richardson et al. 2022, Wang et al. 2022). Wildfire often released a large number 32 

of gaseous precursors such as carbon monoxide (CO), nitrogen dioxides (NOx), and volatile organic 33 

compounds (VOC) (Anderson et al. 2024, Xu et al. 2022), which could significantly enhance the 34 

ozone (O3) levels through photochemical reactions (Jaffe et al. 2013). Recent studies have revealed 35 

that wildfire contributed to 3.6% of ambient all-source O3 level globally (Xu et al. 2023). The 36 

aggravation of O3 pollution not only poses detrimental effects on human health (Liu et al. 2018), 37 

but also reduced the crop yields because the excessive O3 exposure could affect plant photosynthesis 38 

via stomatal uptake (Karmakar et al. 2022, Zhao et al. 2020). Thus, quantifying the negative impacts 39 

of fire-sourced O3 pollution on crop yields was beneficial to propose optimal strategy to ensure 40 

agricultural production.  41 

Notably, warming climate in the future not only would increase wildfire burned areas, but also 42 

intensified the severity of fire weather (Richardson et al. 2022, Wasserman and Mueller 2023). 43 

Moreover, wildfire and heatwave have generated the positive feedback and the mechanism would 44 

be further enhanced in the future (Senande-Rivera et al. 2022, Zhao et al. 2024). Meanwhile, the 45 

ambient O3 concentration was very sensitive to air temperature, and the continuous increase of air 46 

temperature inevitably aggravate wildfire-related O3 pollution in the future (Bloomer et al. 2009, Li 47 

et al. 2024a, Selin et al. 2009). Therefore, it is necessary to analyze the spatiotemporal characteristics 48 

of global wildfire-induced O3 concentrations especially in the future scenarios, which was favorable 49 

to accurately identify the hotspots for wildfire-induced O3 pollution and to propose effective control 50 

measures targeting different future scenarios. 51 

A growing body of studies have focused on the wildfire contribution to O3 pollution. Lee et al. 52 

(2024) employed the generalized additive model (GAM) to predict the wildfire-related O3 53 

concentration in the United States and found wildfire increased average 8 ppb maximum MDA8our 54 

(MDA8) O3 concentration across the entire country (Lee and Jaffe 2024). Besides, Xu et al. (2023) 55 

have quantified that the wildfire led to average 3.2 µg/m3 increase of O3 concentration globally. 56 

Unfortunately, most of the current studies assessed the contribution of historical wildfire to ambient 57 

O3 level, while only two studies explored the wildfire contribution to O3 pollution in the future 58 
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scenarios (Yang et al. 2022, Yue et al. 2015). Both of these studies only focused on wildfire in North 59 

America, whereas the future wildfire contribution to O3 pollution in other regions are still unknown. 60 

Moreover, their negative impacts on crop yields are also not clear. In fact, the global wheat yield 61 

losses reached 0.95% (around 20 t/km2) per ppb O3 increase (Guarin et al. 2019). Although the 62 

current contribution ratio of wildfire to all-source O3 level is not high, the higher wildfire risk and 63 

total crop yields in the future scenarios highlights the seriousness of crop yield losses.  64 

Here, our study developed an ensemble machine-learning model to predict fire-sourced MDA8 65 

O3 levels under four future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Then, the 66 

spatiotemporal variations of these concentrations and the key drivers behind them were further 67 

revealed. Finally, a crop yield loss assessment framework was applied to quantify the negative 68 

impacts (crop yield losses) of wildfire-induced O3 exposure on global crop yield. The hotspots of 69 

crop yield losses in different scenarios should be determined and the appropriate control measures 70 

should be proposed to reduce the economic losses. 71 

2. Materials and methods 72 

2.1 Data preparation 73 

Most ground-level MDA8 O3 observations focused on East Asia, India, Western Europe, and 74 

the contiguous United States. Daily MDA8 O3 data during 2015-2019 over China were collected 75 

from the Ministry of Ecology and Environment of China. The observation network comprises of 76 

2,000 monitoring sites distributed across various land-use types (Figure S1). Quality assurance for 77 

the ground-level observations in China was performed based on the HJ 630-2011 specifications. 78 

The dataset of daily MDA8 O3 concentrations from 2015 to 2019 in India were collected from the 79 

Central Pollution Control Board (CPCB) online database (https://app.cpcbccr.com/ccr/#/caaqm-80 

dashboard-all/caaqm-landing). The detailed data quality assurance/control has been introduced by 81 

Gurjar et al. (2016). Ground-level observation dataset for member countries of the European 82 

Economic Area were collected from the European Environment Agency. The data quality control of 83 

European Environment Agency was explained by Keller et al. (2021). The dataset of daily MDA8 84 

O3 levels in more than 200 monitoring sites across the United States were downloaded from the 85 

website of https://www.epa.gov/ (Figure S1). The quality control of these observations in EPA was 86 

carefully introduced by (Lamsal et al. 2015). Observation data in other countries and territories were 87 
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downloaded from the website of OpenAQ (https://openaq.org/). After the data cleaning and quality 88 

control, more than 300,000 daily MDA8 O3 measurements in 3015 sites were collected to simulate 89 

the global O3 concentrations. For O3, 1 part per billion (ppb) was approximated as 1.96 µg/m3 based 90 

on the standard air pressure and temperature (25.5 °C and 101.325 kPa). The Unite of O3 was 91 

changed into μg/m3 unified. 92 

GEOS-Chem (v13.4.0) model was utilized to estimate atmospheric MDA8 O3 concentrations 93 

during Jan. 1-Dec. 31 during 2015-2019, 2045-2049, and 2095-2099 periods. In our study, the years 94 

of 2015-2019 was regarded as the historical period, whereas the years of 2045-2049 and 2095-2099 95 

were regarded as the future period. This model comprises of a complex chemistry mechanism of 96 

tropospheric NOx-VOC-O3-aerosol (Geddes et al. 2015, Zhao et al. 2017). This model for O3 97 

estimates during historical period and future scenario were driven by MERRA2 and 98 

GCAP2_CMIP6 reanalysis meteorological factors, respectively (Bali et al. 2021, Zhang 2016). The 99 

future scenario includes SSP1-2.6 (low-carbon emission scenario), SSP2-4.5 (middle-carbon 100 

emission scenario), SSP3-7.0 (traditional energy scenario), and SS5-8.5 (high energy consumption 101 

scenario). A global simulation was performed at a spatial resolution of 2 × 2.5° resolution (Bindle 102 

et al. 2021, Wainwright et al. 2012). The historical anthropogenic emission inventory during 2015-103 

2019 was downloaded from Community Emissions Data System (CEDS) (Hoesly et al. 2018). The 104 

anthropogenic and wildfire emissions during 2045-2049 and 2095-2099 were collected from the 105 

website of https://esgf-node.llnl.gov/search/input4mips/. Wildfire emission during 2015-2019 was 106 

obtained from GFED(Chen et al. 2023, Pan et al. 2020, Peiro et al. 2022, van Wees et al. 2022). 107 

Some other natural emission such as the lightning NOx emission was collected from 108 

http://geoschemdata.wustl.edu/ExtData/HEMCO/OFFLINE_LIGHTNING/v2020-03/MERRA2/ 109 

(Li et al. 2022, Nault et al. 2017, Verma et al. 2021). Meteorological factors including 2 m dewpoint 110 

temperature (D2m), surface pressure (Sp), 2 m temperature (T2m), and total precipitation (Tp), 10 111 

m wind component (U10 and V10) during 2015-2019 were collected from the fifth-generation 112 

European Centre for Medium-Range Weather Forecasts Reanalysis (ERA-5). All of these 113 

meteorological data showed the same spatial resolution of 0.25°×0.25°. For the estimates in the 114 

future scenarios, the CMIP6 dataset in four scenarios (e.g., SSP1-2.6, SSP2-4.5, SSP3-7.0, and 115 

SSP5-8.5) were also applied to predict MDA8 O3 concentrations during 2015-2019, 2045-2049, and 116 
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2095-2099. The dataset includes simulated O3 concentrations, 2-m air temperatures, wind speed at 117 

850 and 500 hPa, total cloud cover, precipitation, relative humidity, and short-wave radiation. The 118 

modelled meteorological parameters and chemical compositions derived from multiple earth system 119 

models were integrated into the machine-learning model. The detailed models are introduced in our 120 

previous studies(Li et al. 2024b). The elevation was collected from ETOPO at a spatial resolution 121 

of 1’. Additionally, the land use type data were downloaded from the reference of Liu et al. (2020).  122 

2.2 Model development 123 

A multi-stage model was developed to estimate the global fire-sourced MDA8 O3 124 

concentrations (Figure S1). In the first stage, the ground-level MDA8 O3 levels, meteorological 125 

factors, land use types, and simulated O3 levels derived from GEOS-Chem model were integrated 126 

into XGBoost model to simulate the full-coverage MDA8 O3 levels during 2015-2019. In the second 127 

stage, the simulated O3 concentrations and meteorological parameters in four scenarios (SSP1-2.6, 128 

SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2015-2019, 2045-2049, and 2095-2099 were collected 129 

from CMIP6 dataset including 16 earth system models. Then, the data in the future scenarios were 130 

integrated into the XGBoost model to further calibrate the modeling results based on historical 131 

dataset (2015-2019) derived from the first stage model. This stage could obtain the calibrated MDA8 132 

O3 concentrations in different scenarios during 2015-2019, 2045-2049, and 2095-2099. The detailed 133 

equations of XGBoost model are summarized as follows: 134 

( 1) ( 1)

( 1) ( 1) ( 1)
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where F(t) represents the cost function at the t-th period;   denotes the derivative of the function; 136 

( 1)

2
ty −  means the second derivative of the function; l refers to the differentiable convex loss function 137 

that reveals the difference of the predicted O3 level ( y


) of the i-th instance at the t-th period and the 138 

target value (yi); ft(x) is the increment; ( )tf  reflects the regularizer. Maximum tree depth and 139 

learning rate are 20 and 0.1, respectively.  140 

In the third/final stage, the calibrated MDA8 O3 concentrations based on previous two-stage 141 

models were utilized to correct the bias of GEOS-Chem output. Due to the uncertainty of 142 

GFED/anthropogenic emission inventory and chemical mechanism, the simulated MDA8 O3 143 
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concentration often largely biased from the ground-level observations. Therefore, it is necessary to 144 

use the assimilated results to optimize the wildfire-induced concentrations. The detailed equations 145 

are summarized as follows: 146 

3_ _ 3_ _ 3_ _ 3_ _( / )opt fire cal total chem fire chem totalO O O O= 
 (2) 147 

where 3_ _opt fireO   is optimized wildfire-induced MDA8 O3 concentration in the final stage. 148 

3_ _cal totalO is calibrated total MDA8 O3 concentration. 3_ _chem fireO  is simulated wildfire-induced 149 

MDA8 O3 concentration using GEOS-Chem model. 3_ _chem totalO   is simulated total MDA8 O3 150 

concentrations using GEOS-Chem model. 151 

All of the independent variables obtained from various sources were resampled to 0.25° grids 152 

using Kriging interpolation. For the machine-learning model development, it was necessary to 153 

eliminate some redundant independent variables and then determine the optimal variable group. The 154 

redundant variables were identified based on the fact that the overall predictive accuracy could 155 

degrade after the removal of these variables. 10-fold cross-validation method was applied to 156 

examine the predictive accuracy of XGBoost model. 157 

The modelling accuracy of wildfire emission to MDA8 O3 cannot be evaluated directly, 158 

whereas the modelling performance of total MDA8 O3 concentrations could be assessed. Some 159 

typical statistical indices (supporting information) were applied to evaluate the modelling accuracy 160 

of this model on the basis of the ground-level observations. 161 

2.3 The crop yield loss estimate 162 

Maize, rice, spring wheat, and winter wheat were major food crops globally, and they were 163 

sensitive to O3 stress. A typical AOT40 exposure index was defined to assess the negative impact of 164 

O3 exposure on crop yields. The AOT40 index was calculated by summing the hourly mean O3 165 

levels above 40 ppb during the 8 h over the crop growing season. 166 

 40 3 3

1

( ) ( 40)   [CO ] 40 ppb
n

i i

AOT ppbh CO
=

= −  (3) 167 

where [CO3]i is the hourly O3 (ppb), and n denotes the number of hours over the growing season. 168 

To date, some OTC/FACE experiments have been applied to assess the adverse effects of elevated 169 

O3 concentrations on maize, rice, spring wheat, and winter wheat. The relationships between AOT40 170 
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and the relative yields (RY) for major crops have also been developed in recent years. The detailed 171 

equations are shown in Table S1. The relative yield loss (RYL) of crop is defined as 172 

RYL=1-RY (4) 173 

The estimated yield and economic losses are not only related to the RYL, while also associated 174 

with the grain yield in each grid. The detail equations are shown as follows: 175 

/ (1 )i i i iCPL RYL CP RYL=  −  (5) 176 

where CPLi is the estimated crop production loss and CPi is the actual crop production in each grid 177 

during the study period. 178 

The data about actual crop production in each grid were collected from The Agricultural Model 179 

Intercomparison and Improvement Project (AgMIP). The average value of simulated crop yields 180 

based on four models including DSSAT-Pythia, pDSSAT, LPJ-GUESS, and LPJ-ML were applied 181 

to estimate the actual crop production in each grid during 2015-2019, 2045-2049, and 2095-2099. 182 

We selected the simulate results of these models because they showed the better accuracy.  183 

3. Results and discussions 184 

3.1 Model evaluation 185 

Multi-source information data were integrated into the multi-stage model to predict fire-186 

sourced MDA8 O3 concentrations globally. At first, the global MDA8 O3 simulation was evaluated. 187 

As illustrated in Figure S2, the 10-fold cross-validation (CV) results suggested that the R2 value for 188 

MDA8 O3 estimate reached 0.72. The root mean square error (RMSE) and mean absolute error 189 

(MAE) for MDA8 O3 were 18.1 and 13.2 μg/m³, respectively (Figure S2). The CV R2 value in our 190 

study reached 0.72, which was higher than that estimated by Liu et al. (2020) (0.64), indicating the 191 

satisfied predictive accuracy of O3 estimates. However, the result was slightly lower than that (R2: 192 

0.80 and 0.81) estimated by Xu et al. (2023) and Delang et al. (2021). It was supposed that the 193 

training samples in our study was much less than those used by Xu et al. (2023) (2000-2019 194 

simulation) and Delang et al. (2021) (1990-2019 simulation). It was well known that the predictive 195 

accuracy was strongly dependent on the sample size (Li et al. 2020a, Li et al. 2020b). Overall, the 196 

predictive performance of ambient O3 pollution was robust. 197 

Although the prediction capability of this model has been well validated, the accuracy for the 198 

fire-sourced MDA8 O3 estimates could not be directly tested. It is well-known that potassium (K⁺) 199 
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is often considered to be a fingerprint of wildfire, and thus we employ the relationship between 200 

ground-level K⁺ observations and wildfire-induced MDA8 O3 concentrations to examine the 201 

modelling accuracy. As shown in Figure S2, the correlation (R value) between observed K⁺ levels 202 

and fire-sourced MDA8 O3 concentrations reached 0.67 (146 training samples), which was above 203 

0.5 (p < 0.01). The results have confirmed that the wildfire-induced O3 estimate showed the satisfied 204 

predictive performance. Overall, the predictive performance was close to some previous studies 205 

(Childs et al. 2022, O’Dell et al. 2019, Xu et al. 2023), and thus we could use the result to further 206 

perform the data analysis.   207 

3.2 Spatiotemporal trends of fire-sourced O3 concentrations 208 

Global variations of fire-sourced MDA8 O3 concentrations in historical and future scenarios 209 

are shown in Figure 1 and 2. From 2015 to 2019, the fire-sourced MDA8 O3 level was in the order 210 

of Sub-Saharan Africa (SS) (14.9 ± 8.4 μg/m3) > South Asia (SA) (4.0 ± 2.5 μg/m3) > China (1.6 ± 211 

0.7 μg/m3) > United States (US) (1.3 ± 0.9 μg/m3) > Europe (1.2 ± 0.4 μg/m3). In future scenarios, 212 

fire-sourced MDA8 O3 levels display marked spatial variability across different Shared 213 

Socioeconomic Pathways (SSPs). MDA8 O3 showed the higher concentrations in some regions such 214 

as SS, SA, and US. Among all of the scenarios, fire-sourced O3 levels displayed the highest 215 

concentrations in SS. It was assumed that this region possessed extensive burned area (> 50%) and 216 

higher biomass fuel consumption (5,000-10,000 g C m⁻²) compared with other regions (van Wees 217 

et al. 2022). Following SS, SA also exhibited the higher wildfire-related MDA8 O3 concentrations. 218 

The elevated concentrations of fire-sourced O3 levels in SA were closely associated with 219 

exceptionally high fuel consumption (> 10000 g C m-2) (Chen et al. 2023, van Wees et al. 2022) 220 

though the burned areas were not very high among all of the regions. In addition, it should be noted 221 

that US showed the higher wildfire-induced PM2.5 or other aerosol components based on previous 222 

studies (Park et al. 2024, Xu et al. 2023). However, it did not show the higher O3 concentrations in 223 

nearly all of the scenarios. It was assumed that the MDA8 O3 concentration exhibited significant 224 

latitudinal distribution (decreasing with the increase of latitude) globally. The lower air temperature 225 

restricted the secondary formation of ozone in the countries with the higher latitude. Both of China 226 

and Europe showed very low burned areas (< 5%) and fuel consumption (most regions < 1000 g C 227 

m-2), and thus the fire-sourced MDA8 O3 concentrations were relatively lower compared with SS 228 
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and SA.  229 

Besides, the fire-sourced MDA8 O3 levels exhibited significant inter-annual trends and large 230 

discrepancy between different scenarios. The global average fire-sourced MDA8 O3 concentrations 231 

showed overall increase from 2010s (1.3 ± 0.7 μg/m3) to 2090s (SSP1-2.6, SSP3-7.0, and SSP5-8.5: 232 

1.9 ± 0.9, 1.6 ± 0.8, and 1.4 ± 0.7 μg/m3) for nearly all of the scenarios. The global average wildfire-233 

related MDA8 O3 concentrations (the average of 2040s and 2090s) followed the order of SSP3-7.0 234 

(1.6 ± 0.9 μg/m3) > SSP5-8.5 (1.5 ± 0.8 μg/m3) > SSP1-2.6 (1.4 ± 0.8 μg/m3). The highest wildfire-235 

related MDA8 O3 levels in SSP3-7.0 and SSP5-8.5 scenarios were contributed by the increased fuel 236 

consumption and the warmer condition because O3 level was more sensitive to air temperature 237 

increase (Wang et al. 2021, Wu et al. 2021).  238 

Nevertheless, different regions showed distinct long-term trends. Wildfire-related MDA8 O3 239 

levels in nearly all of the regions in SSP3-7.0 scenario showed remarkable increases compared with 240 

the historical period because the warmer condition facilitated the rapid increase of O3 level (Zhao 241 

et al. 2020). For low-carbon scenario (SSP1-2.6), the wildfire-related MDA8 O3 concentrations in 242 

China, Europe, and US showed the relatively lower O3 levels, whereas SA and SS still increased by 243 

40% and 64%, respectively. The results suggested that the low-carbon pathway cannot effectively 244 

reduce the wildfire-induced O3 pollution in both of SA and SS. 245 

3.3 The crop yield losses caused by O3 exposures 246 

As shown in Figure 4, the global crop yield losses caused by fire-sourced O3 exposure have 247 

been quantified based on the equations 3-5. During historical period, the global fire-sourced O3 248 

caused 3.1, 1.7, 24, and 43 t/km2 crop losses for maize, rice, spring wheat, and winter wheat, 249 

respectively. Compared with the historical period, CPL values in different future scenarios displayed 250 

large discrepancy. In SSP1-2.6 scenario, CPL of maize, rice, spring wheat, and winter wheat 251 

associated with fire-sourced O3 exposure were 1.1, 0.5, 4.6, and 4.6 t/km2, respectively. However, 252 

CPL for maize (2.1 and 2.4 t/km2), rice (1.1 and 1.3 t/km2), spring wheat (557 and 184 t/km2), and 253 

winter wheat (258 and 19 t/km2) caused by fire-sourced O3 exposure experienced dramatic increases 254 

in SSP3-7.0 and SSP5-8.5 scenarios. There are two reasons accounting for the fact. First of all, the 255 

wildfire-related O3 exposures showed marked increase in high-emission scenarios (Yang et al. 2022, 256 

Yue et al. 2017). Moreover, the crop yields also displayed substantial increases in both of these 257 
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scenarios because rapid increase of fertilizer consumption (Brunelle et al. 2015, Randive et al. 2021).  258 

In addition, CPL caused by fire-sourced O3 exposure also suffered significant spatial difference. 259 

During the historical period, the total CPL for four major foods caused by fire-sourced O3 exposure 260 

in China, Europe, US, SA, and SS were 1451, 65, 61, 56, and 404 t/km2, respectively. In the future 261 

scenario (SSP1-2.6, SSP3-7.0, and SSP5-8.5), the total CPL for four major foods caused by fire-262 

sourced O3 exposure in China, Europe, US, SA, and SS were 23 (711 and 339), 14 (684 and 32), 11 263 

(19 and 21), 14 (35 and 21), 298 (160 and 745) t/km2, respectively. In both of historical and future 264 

scenarios, SS, SA, and China showed the higher CPL compared with other regions. The higher CPL 265 

in SS and SA might be attributable to the higher fire-sourced O3 concentrations and crop yields. The 266 

higher CPL in China might be associated with exceptionally high crop yields though the wildfire-267 

induced O3 level was not very high. For most regions, CPL showed the higher values in high-268 

emission scenarios (SSP3-7.0 and SSP5-8.5). Although SS and SA also showed the higher CPL in 269 

high-emission scenarios (SSP5-8.5), the CPL values of SS and SA in SSP1-2.6 scenario were still 270 

very high. The results suggested that the low-carbon policy still cannot effectively weaken local 271 

agricultural damage of fire-sourced O3 exposure.  272 

3.4 Implications and limitations 273 

Our study developed a multi-stage machine-learning model based on the multi-source 274 

information data to predict the fire-sourced MDA8 O3 concentrations at the global scale. It is the 275 

first study to use the ground-level observations as the constraint to improve the O3 estimates in the 276 

future scenarios. The results confirmed that the model showed the better predictive accuracy and 277 

transferability.  278 

Our assessment highlighted the severity and scale of the fire-sourced MDA8 O3 level and a 279 

notable increasing trend in the future scenarios. Especially in high-emission scenarios (SSP3-7.0 280 

and SSP5-8.5), the fire-sourced MDA8 O3 showed the higher concentrations compared with the 281 

low-carbon scenario. Therefore, the global mean temperature increase should be limited to 2.0 °C 282 

or 1.5 °C above pre-industrial levels. In addition, both of SS and SA showed the highest wildfire-283 

induced MDA8 O3 concentration compared with other regions, indicating these hotspots should be 284 

determined to propose some control measures. For instance, wildfires could be partially controlled 285 

via effective evidence-based fire management and appropriate planning (González-Mathiesen and 286 
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March 2021, Gonzalez-Mathiesen et al. 2021). Some prevention policy should be proposed to 287 

reduce agricultural waste incineration and some prescribed fires (Koul et al. 2022, Lange and 288 

Gillespie 2023). Some wildlands could be also changed into agricultural or commercial lands to 289 

reduce the occurrence frequency of forest wildfire (Mansoor et al. 2022).  290 

Besides, the impacts of fire-sourced O3 pollution on crop yields were also quantified. The 291 

results confirmed China was faced of serious crop production losses, which was even higher than 292 

those in SS and SA because the higher crop production and increasing O3 pollution risk in the future 293 

scenarios. Overall, crop yield losses of China showed significantly higher values in high-emission 294 

scenario (SSP3-7.0 and SSP5-8.5) compared with low-emission scenario (SSP1-2.6). The results 295 

suggested that low-carbon policy not only largely weaken O3 pollution derived from anthropogenic 296 

emission in China, but also decrease wildfire-induced O3 damages to crop yields effectively. The 297 

results also confirm that the carbon neutrality policy implemented in China possess sufficient 298 

agricultural benefits. In contrast, crop yield losses of SS and SA in low-carbon scenario still showed 299 

very high risks. It requires more stringent control measures to further reduce local anthropogenic 300 

emission in order to offset the wildfire-induced O3 contribution. 301 

It should be noted that our study is still subject to some limitations. Firstly, the future wildfire 302 

emission inventory still shows some uncertainties because the accuracy of land use types and burned 303 

areas in the future scenarios cannot be examined directly. Second, the chemical transport model 304 

used in our study did not account for plume rise, which could overestimate the contribution of 305 

wildfire emissions to O3 pollution. Third, the ground-level observations of ambient O3 are unevenly 306 

distributed around the world, which could limit the predictive accuracy of O3 levels especially in 307 

some regions (e.g., SS and SA) lack of monitoring sites. In the future, it is highly necessary to add 308 

sufficient ground-level O3 observations to further improve the accuracy of O3 estimates. Besides, 309 

we only used K+ observations to examine the predictive accuracy of fire-sourced O3, while K+ might 310 

be affected by soil dust. In the future, we should use levoglucosan coupled with K+ to validate the 311 

predictive accuracy of fire-sourced O3 because levoglucosan was a stronger fingerprint to reflect the 312 

fire emission. Finally, the zero-out method might suffer from some limitations because O3 chemistry 313 

is nonlinear. More other methods such as air pollutant tracing method should be applied to quantify 314 

the fire-sourced O3 concentrations combined with zero-out method. The combination of multiple 315 
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method could increase the robustness of fire-sourced O3 estimates. 316 
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Figure 1 The fire-sourced MDA8 O3 concentrations (Unit: μg/m3) during 2015-2019 (2010s) at the 

global scale (a). The latitudinal variations of fire-sourced MDA8 O3 levels (Unit: μg/m3) (b). The 

spatial distributions of fire-sourced MDA8 O3 concentrations (Unit: μg/m3) during 2015-2019 

(2010s) (c). US, SA, and SS represent the United States, South America, and Sub-Sahara Africa, 

respectively. The difference of fire-sourced MDA8 O3 concentrations in different regions (d).  
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Figure 2 The global variations of fire-sourced MDA8 O3 levels (Unit: μg/m3) in SSP1-2.6 (a), SSP3-

7.0 (b), and SSP5-8.5 (c) scenarios during 2040s. The spatial distributions of wildfire-related MDA8 

O3 concentrations (Unit: μg/m3) in different regions during 2040s (d). US, SA, and SS represent the 

United States, South America, and Sub-Sahara Africa, respectively. 
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Figure 3 The global variations of fire-sourced O3-related maize yield losses (Unit: t/km2) during 

historical (a), SSP1-2.6 (b), SSP3-7.0 (d), and SSP5-8.5 (e) scenarios during 2040s, respectively. 

The spatial variations of fire-sourced maize yield losses (Unit: t/km2) in major regions during 2040s. 

US, SA, and SS represent the United States, South America, and Sub-Sahara Africa, respectively. 
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Figure 4 The spatial variations of fire-sourced O3-related maize (a), rice (b), spring wheat (c), and 

winter wheat (d) yield losses (Unit: t/km2) during SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios 

during 2040s, respectively. A, B, and C denote SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios, 

respectively. (e)-(h) represent fire-sourced O3-related maize (e), rice (f), spring wheat (g), and winter 

wheat (h) yield losses during SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios during 2090s, 

respectively. US, SA, and SS represent the United States, South America, and Sub-Sahara Africa, 

respectively. 
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